1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
//! This module contains the core [`Tokens`] trait, which adds various convenience methods
//! to the standard [`Iterator`] interface aimed at making it easy to parse the input.
//!
//! The [`IntoTokens`] trait is implemented for types that can be converted into something
//! implementing the [`Tokens`] trait (for example `&str` and `&[T]`).
mod many;
mod many_err;
mod tokens_while;
mod sep_by;
mod sep_by_err;
mod sep_by_all;
mod sep_by_all_err;
mod slice;
use std::borrow::Borrow;
// Re-export the structs handed back from token fns:
pub use tokens_while::TokensWhile;
pub use many::Many;
pub use many_err::ManyErr;
pub use sep_by::SepBy;
pub use sep_by_err::SepByErr;
pub use sep_by_all::SepByAll;
pub use sep_by_all_err::SepByAllErr;
pub use slice::Slice;
use crate::types::{ WithContext, WithContextMut };
/// The tokens trait builds on the [`Iterator`] trait, and adds a bunch of useful methods
/// for parsing tokens from the underlying iterable type.
pub trait Tokens: Iterator + Sized {
/// An object which can be used to reset the token stream
/// to some position.
type Location: TokenLocation + PartialEq + std::fmt::Debug + Clone;
/// Return a "location" pointer. This can be passed to [`Tokens::set_location`]
/// to set the tokens location back to the state at the time it was handed out.
/// If the [`crate::TokenLocation`] trait is in scope, you can also call the
/// [`crate::TokenLocation::offset()`] method on it to obtain the current offset.
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, IntoTokens, TokenLocation };
///
/// let mut s = "abcde".into_tokens();
///
/// let location = s.location();
///
/// assert_eq!(s.next().unwrap(), 'a');
/// assert_eq!(s.location().offset(), 1);
/// assert_eq!(s.next().unwrap(), 'b');
/// assert_eq!(s.location().offset(), 2);
///
/// s.set_location(location);
///
/// assert_eq!(s.next().unwrap(), 'a');
/// assert_eq!(s.location().offset(), 1);
/// assert_eq!(s.next().unwrap(), 'b');
/// assert_eq!(s.location().offset(), 2);
/// ```
fn location(&self) -> Self::Location;
/// Set the tokens to the location provided. See [`Tokens::location`].
fn set_location(&mut self, location: Self::Location);
/// Return true if the current cursor location matches the location given, or false
/// otherwise.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abc".into_tokens();
/// let location = s.location();
/// assert_eq!(s.is_at_location(&location), true);
/// s.next();
/// assert_eq!(s.is_at_location(&location), false);
/// s.set_location(location);
/// assert_eq!(s.is_at_location(&location), true);
/// ```
fn is_at_location(&self, location: &Self::Location) -> bool;
/// Attach some context to your tokens. The returned struct, [`WithContext`], also implements
/// [`Tokens`], and so has can be used in much the same way. Since this consumes your tokens, it's
/// better suited to permanent context that you'd like throughout the parsing.
///
/// See [`Tokens::with_context_mut`] for a version that's easier to attach temporary context with.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens, types::WithContext };
///
/// fn skip_digits(toks: &mut WithContext<impl Tokens<Item=char>, usize>) {
/// let n_skipped = toks.skip_tokens_while(|c| c.is_digit(10));
/// *toks.context_mut() += n_skipped;
/// }
///
/// let mut tokens = "123abc456".into_tokens().with_context(0usize);
///
/// skip_digits(&mut tokens);
/// tokens.skip_tokens_while(|c| c.is_alphabetic());
/// skip_digits(&mut tokens);
///
/// assert_eq!(*tokens.context(), 6);
/// ```
fn with_context<C>(self, context: C) -> WithContext<Self, C> {
WithContext::new(self, context)
}
/// Unlike [`Tokens::with_context`], which consumes the tokens, this borrows them mutably, allowing it to
/// be used when you only have a mutable reference to tokens (which is a common function signature to use),
/// and making it better suited to attaching temporary contexts.
///
/// Be aware that if you attach context in a function called recursively, the type checker may shout at you
/// for contructing a type like `WithContextMut<WithContextMut<WithContextMut<..>>>`. In these cases, you
/// can "break the cycle" by removing the original `WithContextMut` by using
/// [`crate::types::WithContextMut::into_parts()`] before wrapping the tokens in a new context for the recursive
/// call.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// fn count_digit_comma_calls(toks: &mut impl Tokens<Item=char>) -> (u8, u8) {
/// let mut counts = (0u8, 0u8);
/// toks.with_context_mut(&mut counts).sep_by(
/// |t| {
/// t.context_mut().0 += 1;
/// let n_skipped = t.skip_tokens_while(|c| c.is_digit(10));
/// if n_skipped == 0 { None } else { Some(()) }
/// },
/// |t| {
/// t.context_mut().1 += 1;
/// t.token(',')
/// }
/// ).last();
/// counts
/// }
///
/// let n: usize = 0;
/// let mut tokens = "123,4,56,1,34,1".into_tokens();
///
/// let (digits, seps) = count_digit_comma_calls(&mut tokens);
///
/// assert_eq!(tokens.remaining().len(), 0);
/// // digits parsed 6 times:
/// assert_eq!(digits, 6);
/// // Attempted to parse seps 6 times; failure on last ends it:
/// assert_eq!(seps, 6);
/// ```
fn with_context_mut<C>(&mut self, context: C) -> WithContextMut<&mut Self, C> {
WithContextMut::new(self, context)
}
/// Return a slice of tokens starting at the `to` location provided and ending just prior to
/// the `from` location provided (ie equivalent to the range `to..from`).
///
/// The slice returned from implements [`Iterator`] and [`Tokens`], so you can use the full range
/// of parsing functions on it, or simply collect up the slice of tokens as you wish.
///
/// **Note:** the slice returned from this prevents the original tokens from being used until
/// it's dropped, and resets the original tokens to their current location on `Drop`. if you
/// [`std::mem::forget`] it, the original token location will equal whatever the slice location
/// was when it was forgotten.
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abcdefghijklmnop".into_tokens();
///
/// (0..5).for_each(|_| { s.next(); });
/// let from = s.location();
/// (0..5).for_each(|_| { s.next(); });
/// let to = s.location();
///
/// assert_eq!(s.next(), Some('k'));
/// assert_eq!(s.next(), Some('l'));
///
/// // Iterating the from..to range given:
/// let vals: String = s.slice(from.clone(), to.clone()).collect();
/// assert_eq!(&*vals, "fghij");
///
/// // After the above is dropped, we can continue
/// // from where we left off:
/// assert_eq!(s.next(), Some('m'));
/// assert_eq!(s.next(), Some('n'));
///
/// // We can iterate this range again as we please:
/// let vals: String = s.slice(from, to).collect();
/// assert_eq!(&*vals, "fghij");
///
/// // And the original remains unaffected..
/// assert_eq!(s.next(), Some('o'));
/// assert_eq!(s.next(), Some('p'));
/// ```
fn slice(&'_ mut self, from: Self::Location, to: Self::Location) -> Slice<'_, Self> {
Slice::new(self, self.location(), from, to)
}
/// Return the current offset into the tokens that we've parsed up to so far.
/// The exact meaning of this can vary by implementation; when parsing slices, it
/// is index of the slice item we've consumed up to, and when
/// parsing `&str`'s it is the number of bytes (not characters) consumed so far.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abc".into_tokens();
/// assert_eq!(s.offset(), 0);
/// s.next();
/// assert_eq!(s.offset(), 1);
/// s.next();
/// assert_eq!(s.offset(), 2);
/// ```
fn offset(&self) -> usize {
self.location().offset()
}
/// Return the next item in the input without consuming it.
///
/// Prefer this to using the `peekable` iterator method, which consumes
/// the tokens, and internally keeps hold of the peeked state itself.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abc".into_tokens();
/// assert_eq!(s.peek(), Some('a'));
/// assert_eq!(s.peek(), Some('a'));
/// ```
fn peek(&mut self) -> Option<Self::Item> {
let location = self.location();
let item = self.next();
self.set_location(location);
item
}
/// Expect a specific token to be next. If the token is not found, the iterator is not
/// advanced.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abc".into_tokens();
/// assert_eq!(s.token(&'a'), true);
/// assert_eq!(s.token(&'b'), true);
/// assert_eq!(s.token('z'), false);
/// assert_eq!(s.token('y'), false);
/// assert_eq!(s.token('c'), true);
/// ```
fn token<I>(&mut self, t: I) -> bool
where
Self::Item: PartialEq,
I: Borrow<Self::Item>
{
let location = self.location();
match self.next() {
Some(item) if &item == t.borrow() => true,
_ => {
self.set_location(location);
false
}
}
}
/// Expect a specific set of tokens to be next. If the tokens are not found, the iterator is not
/// advanced. Anything that implements `IntoIterator` with an `Item` type that can be borrowed to
/// produce `&Item` can be provided as an input to this.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abcdef".into_tokens();
///
/// assert_eq!(s.tokens("abc".chars()), true);
/// assert_eq!(s.remaining(), "def");
///
/// assert_eq!(s.tokens("de".chars()), true);
/// assert_eq!(s.remaining(), "f");
/// ```
fn tokens<It>(&mut self, ts: It) -> bool
where
Self::Item: PartialEq,
It: IntoIterator,
It::Item: Borrow<Self::Item>
{
let location = self.location();
// `ts` comes first to avoid consuming an extra item from self before
// realising that it's time to stop..
for (expected, actual) in ts.into_iter().zip(self.into_iter()) {
if &actual != expected.borrow() {
self.set_location(location);
return false;
}
}
true
}
/// Return the first token that matches the tokens provided, or None if none of them
/// match.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "abcdef".into_tokens();
///
/// assert_eq!(s.one_of_tokens("abc".chars()), Some('a'));
/// assert_eq!(s.one_of_tokens("abc".chars()), Some('b'));
/// assert_eq!(s.one_of_tokens("abc".chars()), Some('c'));
/// assert_eq!(s.one_of_tokens("abc".chars()), None);
/// assert_eq!(s.remaining(), "def");
/// ```
fn one_of_tokens<It>(&mut self, ts: It) -> Option<Self::Item>
where
Self::Item: PartialEq,
It: IntoIterator,
It::Item: Borrow<Self::Item>
{
for expected in ts.into_iter() {
let location = self.location();
match self.next() {
Some(token) if &token == expected.borrow() => {
return Some(token)
},
_ => {
self.set_location(location);
}
}
}
None
}
/// Return an iterator that will consume tokens until the provided function returns false.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "12345abc".into_tokens();
/// let digits: String = s.tokens_while(|c| c.is_numeric()).collect();
/// assert_eq!(&*digits, "12345");
/// assert_eq!(s.remaining(), "abc");
/// ```
fn tokens_while<F>(&'_ mut self, f: F) -> TokensWhile<'_, Self, F>
where
F: FnMut(&Self::Item) -> bool
{
TokensWhile::new(self, f)
}
/// Iterate over the tokens until the provided function returns false on one.
/// Only consume the tokens that the function returned true for, and ignore them.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "12345abc".into_tokens();
/// let n_skipped = s.skip_tokens_while(|c| c.is_numeric());
///
/// assert_eq!(n_skipped, 5);
/// assert_eq!(s.remaining(), "abc");
/// ```
fn skip_tokens_while<F>(&mut self, f: F) -> usize
where
F: FnMut(&Self::Item) -> bool
{
self.tokens_while(f).count()
}
/// Returns an iterator that, on each iteration, attempts to run the provided parser
/// on the remaining tokens. If the parser returns [`None`], no tokens will be consumed.
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, IntoTokens };
///
/// fn parse_digit_pair(tokens: &mut impl Tokens<Item=char>) -> Option<u32> {
/// let d1 = tokens.next()?;
/// let d2 = tokens.next()?;
/// // Return the result of adding the 2 digits we saw:
/// Some(d1.to_digit(10)? + d2.to_digit(10)?)
/// }
///
/// let mut s = "12345abcde".into_tokens();
/// let digits: Vec<u32> = s.many(|t| parse_digit_pair(t)).collect();
///
/// assert_eq!(digits, vec![3, 7]);
/// assert_eq!(s.remaining(), "5abcde");
/// ```
fn many<F, Output>(&mut self, parser: F) -> Many<Self, F>
where
F: FnMut(&mut Self) -> Option<Output>
{
Many::new(self, parser)
}
/// Returns an iterator that, on each iteration, attempts to run the provided parser
/// on the remaining tokens. If the parser returns an error, no tokens will be consumed
/// and the error will be returned as the final iteration.
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, IntoTokens };
///
/// #[derive(Debug, PartialEq)]
/// enum Err { NotEnoughTokens, NotADigit(char) }
/// fn parse_digit_pair(tokens: &mut impl Tokens<Item=char>) -> Result<u32, Err> {
/// let n1 = tokens.next()
/// .ok_or(Err::NotEnoughTokens)
/// .and_then(|c| c.to_digit(10).ok_or(Err::NotADigit(c)))?;
/// let n2 = tokens.next()
/// .ok_or(Err::NotEnoughTokens)
/// .and_then(|c| c.to_digit(10).ok_or(Err::NotADigit(c)))?;
/// Ok(n1 + n2)
/// }
///
/// let mut s = "12345abcde".into_tokens();
/// let mut digits_iter = s.many_err(|t| parse_digit_pair(t));
///
/// assert_eq!(digits_iter.next(), Some(Ok(3)));
/// assert_eq!(digits_iter.next(), Some(Ok(7)));
/// assert_eq!(digits_iter.next(), Some(Err(Err::NotADigit('a'))));
/// assert_eq!(digits_iter.next(), None);
/// assert_eq!(s.remaining(), "5abcde");
/// ```
fn many_err<F, Output, E>(&'_ mut self, parser: F) -> ManyErr<'_, Self, F>
where
F: FnMut(&mut Self) -> Result<Output, E>
{
ManyErr::new(self, parser)
}
/// Ignore 0 or more instances of some parser.
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, IntoTokens };
///
/// struct ABC;
/// fn parse_abc(tokens: &mut impl Tokens<Item=char>) -> Option<ABC> {
/// let a = tokens.next()?;
/// let b = tokens.next()?;
/// let c = tokens.next()?;
/// if a == 'a' && b == 'b' && c == 'c' {
/// Some(ABC)
/// } else {
/// None
/// }
/// }
///
/// let mut s = "abcabcababab".into_tokens();
/// s.skip_many(|t| parse_abc(t).is_some());
///
/// assert_eq!(s.remaining(), "ababab");
/// ```
fn skip_many<F>(&mut self, mut parser: F) -> usize
where
F: FnMut(&mut Self) -> bool
{
self.many(|t| parser(t).then(|| ())).count()
}
/// Ignore 1 or more instances of some parser. If the provided parser
/// fails immediately, return the error that it produced.
///
/// # Example
///
/// ```rust
/// use yap::{ Tokens, IntoTokens };
///
/// struct ABC;
/// fn parse_abc(tokens: &mut impl Tokens<Item=char>) -> Option<ABC> {
/// let a = tokens.next()?;
/// let b = tokens.next()?;
/// let c = tokens.next()?;
/// if a == 'a' && b == 'b' && c == 'c' {
/// Some(ABC)
/// } else {
/// None
/// }
/// }
///
/// let mut s = "abcabcabcxyz".into_tokens();
/// let skipped = s.skip_many1(|t| parse_abc(t).ok_or("aaah"));
///
/// assert_eq!(skipped, Ok(3));
/// assert_eq!(s.remaining(), "xyz");
///
/// let mut s = "ababababcabc".into_tokens();
/// let skipped = s.skip_many1(|t| parse_abc(t).ok_or("aaah"));
///
/// assert_eq!(skipped, Err("aaah"));
/// assert_eq!(s.remaining(), "ababababcabc");
/// ```
fn skip_many1<F, E, Ignored>(&mut self, parser: F) -> Result<usize, E>
where
F: FnMut(&mut Self) -> Result<Ignored, E>
{
let mut iter = self.many_err(parser);
// Return error if immediate fail:
if let Some(Err(e)) = iter.next() {
return Err(e);
}
// Else just consume whatever we can and count it all up.
// Note: the last iteration of `many_err` will return an Error
// and not a value, so where we'd otherwise `+1` this count to
// account for the `iter.next()` above, we don't have to.
let n_skipped = iter.count();
Ok(n_skipped)
}
/// Return an iterator that parses anything matching the `parser` function, and expects
/// to parse something matching the `separator` function between each one.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Option<u32> {
/// let c = tokens.next()?;
/// c.to_digit(10)
/// }
///
/// let mut s = "1,2,3,4,abc".into_tokens();
/// let digits: Vec<u32> = s.sep_by(|t| parse_digit(t), |t| t.token(',')).collect();
/// assert_eq!(digits, vec![1,2,3,4]);
/// assert_eq!(s.remaining(), ",abc");
/// ```
fn sep_by<F, S, Output>(&'_ mut self, parser: F, separator: S) -> SepBy<'_, Self, F, S>
where
F: FnMut(&mut Self) -> Option<Output>,
S: FnMut(&mut Self) -> bool
{
SepBy::new(self, parser, separator)
}
/// Return an iterator that parses anything matching the `parser` function, and expects
/// to parse something matching the `separator` function between each one. Unlike [`Tokens::sep_by`],
/// this accepts parsers that return `Result`s, and returns the result on each iteration. Once
/// an error is hit, `None` is returned thereafter.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// #[derive(Debug, PartialEq)]
/// enum Err { NoMoreTokens, NotADigit(char) }
///
/// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Result<u32, Err> {
/// let c = tokens.next().ok_or(Err::NoMoreTokens)?;
/// c.to_digit(10).ok_or(Err::NotADigit(c))
/// }
///
/// let mut s = "1,2,a,1,2,3".into_tokens();
/// let mut digits_iter = s.sep_by_err(|t| parse_digit(t), |t| t.token(','));
/// assert_eq!(digits_iter.next(), Some(Ok(1)));
/// assert_eq!(digits_iter.next(), Some(Ok(2)));
/// assert_eq!(digits_iter.next(), Some(Err(Err::NotADigit('a'))));
/// assert_eq!(digits_iter.next(), None);
/// assert_eq!(s.remaining(), ",a,1,2,3");
/// ```
fn sep_by_err<F, S, E, Output>(&'_ mut self, parser: F, separator: S) -> SepByErr<'_, Self, F, S>
where
F: FnMut(&mut Self) -> Result<Output, E>,
S: FnMut(&mut Self) -> bool
{
SepByErr::new(self, parser, separator)
}
/// Returns an iterator that parses anything matching the `parser` function,
/// and expects to parse something matching the `separator` function between each one.
/// The iterator returns the output from both the `parser` and `separator` function,
/// which means that they are expected to return the same type.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// #[derive(PartialEq,Debug)]
/// enum Op { Plus, Minus, Divide }
/// #[derive(PartialEq,Debug)]
/// enum OpOrDigit { Op(Op), Digit(u32) }
///
/// fn parse_op(tokens: &mut impl Tokens<Item=char>) -> Option<Op> {
/// match tokens.next()? {
/// '-' => Some(Op::Minus),
/// '+' => Some(Op::Plus),
/// '/' => Some(Op::Divide),
/// _ => None
/// }
/// }
///
/// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Option<u32> {
/// let c = tokens.next()?;
/// c.to_digit(10)
/// }
///
/// let mut s = "1+2/3-4+abc".into_tokens();
/// let output: Vec<_> = s.sep_by_all(
/// |t| parse_digit(t).map(OpOrDigit::Digit),
/// |t| parse_op(t).map(OpOrDigit::Op)
/// ).collect();
///
/// assert_eq!(output, vec![
/// OpOrDigit::Digit(1),
/// OpOrDigit::Op(Op::Plus),
/// OpOrDigit::Digit(2),
/// OpOrDigit::Op(Op::Divide),
/// OpOrDigit::Digit(3),
/// OpOrDigit::Op(Op::Minus),
/// OpOrDigit::Digit(4),
/// ]);
/// assert_eq!(s.remaining(), "+abc");
/// ```
fn sep_by_all<F, S, Output>(&'_ mut self, parser: F, separator: S) -> SepByAll<'_, Self, F, S, Output>
where
F: FnMut(&mut Self) -> Option<Output>,
S: FnMut(&mut Self) -> Option<Output>
{
SepByAll::new(self, parser, separator)
}
/// Similar to [`Tokens::sep_by_all`], except that the iterator returned also hands back
/// the first error encountered when attempting to run our `parser`.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// #[derive(PartialEq,Debug)]
/// enum Op { Plus, Minus, Divide }
/// #[derive(PartialEq,Debug)]
/// enum OpOrDigit { Op(Op), Digit(u32) }
/// #[derive(Debug, PartialEq)]
/// enum Err { NoMoreTokens, NotADigit(char) }
///
/// fn parse_op(tokens: &mut impl Tokens<Item=char>) -> Option<Op> {
/// match tokens.next()? {
/// '-' => Some(Op::Minus),
/// '+' => Some(Op::Plus),
/// '/' => Some(Op::Divide),
/// _ => None
/// }
/// }
///
/// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Result<u32, Err> {
/// let c = tokens.next().ok_or(Err::NoMoreTokens)?;
/// c.to_digit(10).ok_or(Err::NotADigit(c))
/// }
///
/// let mut s = "1+2/3-4+abc".into_tokens();
/// let output: Vec<_> = s.sep_by_all_err(
/// |t| parse_digit(t).map(OpOrDigit::Digit),
/// |t| parse_op(t).map(OpOrDigit::Op)
/// ).collect();
///
/// assert_eq!(output, vec![
/// Ok(OpOrDigit::Digit(1)),
/// Ok(OpOrDigit::Op(Op::Plus)),
/// Ok(OpOrDigit::Digit(2)),
/// Ok(OpOrDigit::Op(Op::Divide)),
/// Ok(OpOrDigit::Digit(3)),
/// Ok(OpOrDigit::Op(Op::Minus)),
/// Ok(OpOrDigit::Digit(4)),
/// Err(Err::NotADigit('a'))
/// ]);
/// assert_eq!(s.remaining(), "+abc");
/// ```
fn sep_by_all_err<F, S, Output, E>(&'_ mut self, parser: F, separator: S) -> SepByAllErr<'_, Self, F, S, Output>
where
F: FnMut(&mut Self) -> Result<Output, E>,
S: FnMut(&mut Self) -> Option<Output>
{
SepByAllErr::new(self, parser, separator)
}
/// Parse some tokens that are optionally surrounded by the result of a `surrounding` parser.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = " hello ".into_tokens();
///
/// let hello: String = s.surrounded_by(
/// |t| t.tokens_while(|c| c.is_ascii_alphabetic()).collect(),
/// |t| { t.skip_tokens_while(|c| c.is_ascii_whitespace()); }
/// );
///
/// assert_eq!(&*hello, "hello");
/// assert_eq!(s.remaining(), "");
/// ```
fn surrounded_by<F, S, Output>(&mut self, mut parser: F, mut surrounding: S) -> Output
where
F: FnMut(&mut Self) -> Output,
S: FnMut(&mut Self)
{
self.skip_optional(&mut surrounding);
let res = parser(self);
self.skip_optional(&mut surrounding);
res
}
/// Attempt to parse some output from the tokens. If the function returns `None`,
/// no tokens will be consumed. Else, return whatever the function produced.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = "foobar".into_tokens();
///
/// let res = s.optional(|s| {
/// let a = s.next();
/// let b = s.next();
/// if a == b {
/// Some("yay")
/// } else {
/// None
/// }
/// });
///
/// // nothing consumed since None returned from fn
/// assert_eq!(s.remaining(), "foobar");
/// assert_eq!(res, None);
///
/// let res = s.optional(|s| {
/// let a = s.next()?;
/// let b = s.next()?;
/// Some((a, b))
/// });
///
/// // 2 chars consumed since Some returned from fn
/// assert_eq!(s.remaining(), "obar");
/// assert_eq!(res, Some(('f', 'o')));
/// ```
fn optional<F, Output>(&mut self, mut f: F) -> Option<Output>
where F: FnMut(&mut Self) -> Option<Output> {
let location = self.location();
match f(self) {
Some(output) => Some(output),
None => {
self.set_location(location);
None
}
}
}
/// Run a parser against some tokens, and don't care whether it succeeded
/// or how much input it consumed.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens };
///
/// let mut s = " helloworld".into_tokens();
///
/// fn parse_whitespace(t: &mut impl Tokens<Item=char>) {
/// t.skip_tokens_while(|c| c.is_ascii_whitespace());
/// }
///
/// s.skip_optional(|t| parse_whitespace(t));
/// let is_hello = s.tokens("hello".chars());
/// s.skip_optional(|t| parse_whitespace(t));
/// let world: String = s.tokens_while(|c| c.is_ascii_alphabetic()).collect();
///
/// // assert_eq!(is_hello, true);
/// // assert_eq!(&*world, "world");
/// ```
fn skip_optional<F>(&mut self, mut f: F)
where F: FnMut(&mut Self) {
self.optional(|t| {
f(t);
Some(())
});
}
}
/// Calling [`Tokens::location()`] returns an object that implements this trait.
pub trait TokenLocation {
/// Return the current offset into the tokens at the point at which this object
/// was created. [`Tokens::offset()`] is simply a shorthand for calling this method
/// at the current location.
///
/// # Example
///
/// ```
/// use yap::{ Tokens, IntoTokens, TokenLocation };
///
/// let mut s = "abc".into_tokens();
/// assert_eq!(s.location().offset(), 0);
/// s.next();
/// assert_eq!(s.location().offset(), 1);
/// s.next();
/// assert_eq!(s.location().offset(), 2);
/// ```
fn offset(&self) -> usize;
}
/// A trait that is implemented by anything which can be converted into an
/// object implementing the [`Tokens`] trait.
pub trait IntoTokens<Item> {
type Tokens: Tokens<Item=Item>;
fn into_tokens(self) -> Self::Tokens;
}
#[cfg(test)]
mod test {
use super::*;
#[derive(Debug, PartialEq)]
struct AB;
// A simple parser that looks for "ab" in an input token stream.
// Notably, it doesn't try to rewind on failure. We expect the `many`
// combinators to take care of that sort of thing for us as needed.
fn parse_ab(t: &mut impl Tokens<Item=char>) -> Option<AB> {
// match any sequence "ab".
let a = t.next()?;
let b = t.next()?;
if a == 'a' && b == 'b' {
Some(AB)
} else {
None
}
}
// Similar to the above, except it reports a more specific reason for
// failure.
fn parse_ab_err(t: &mut impl Tokens<Item=char>) -> Result<AB, ABErr> {
// match any sequence "ab".
let a = t.next().ok_or(ABErr::NotEnoughTokens)?;
let b = t.next().ok_or(ABErr::NotEnoughTokens)?;
if a != 'a' {
Err(ABErr::IsNotA)
} else if b != 'b' {
Err(ABErr::IsNotB)
} else {
Ok(AB)
}
}
#[derive(Debug, PartialEq)]
enum ABErr {
NotEnoughTokens,
IsNotA,
IsNotB
}
#[test]
#[allow(clippy::needless_collect)]
fn test_many() {
// No input:
let mut t = "".into_tokens();
let abs: Vec<_> = t.many(|t| parse_ab(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs.len(), 0);
assert_eq!(rest, vec![]);
// Invalid input after half is consumed:
let mut t = "acabab".into_tokens();
let abs: Vec<_> = t.many(|t| parse_ab(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs.len(), 0);
assert_eq!(rest, vec!['a', 'c', 'a', 'b', 'a', 'b']);
// 3 valid and then 1 half-invalid:
let mut t = "abababaa".into_tokens();
let abs: Vec<_> = t.many(|t| parse_ab(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs.len(), 3);
assert_eq!(rest, vec!['a', 'a']);
// End of tokens before can parse the fourth:
let mut t = "abababa".into_tokens();
let abs: Vec<_> = t.many(|t| parse_ab(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs.len(), 3);
assert_eq!(rest, vec!['a']);
}
#[test]
#[allow(clippy::needless_collect)]
fn test_many_err() {
// No input:
let mut t = "".into_tokens();
let abs: Vec<_> = t.many_err(|t| parse_ab_err(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs, vec![Err(ABErr::NotEnoughTokens)]);
assert_eq!(rest, vec![]);
// Invalid input immediately:
let mut t = "ccabab".into_tokens();
let abs: Vec<_> = t.many_err(|t| parse_ab_err(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs, vec![Err(ABErr::IsNotA)]);
assert_eq!(rest, vec!['c', 'c', 'a', 'b', 'a', 'b']);
// Invalid input after half is consumed:
let mut t = "acabab".into_tokens();
let abs: Vec<_> = t.many_err(|t| parse_ab_err(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs, vec![Err(ABErr::IsNotB)]);
assert_eq!(rest, vec!['a', 'c', 'a', 'b', 'a', 'b']);
// 3 valid and then 1 half-invalid:
let mut t = "abababaa".into_tokens();
let abs: Vec<_> = t.many_err(|t| parse_ab_err(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs, vec![Ok(AB), Ok(AB), Ok(AB), Err(ABErr::IsNotB)]);
assert_eq!(rest, vec!['a', 'a']);
// End of tokens before can parse the fourth:
let mut t = "abababa".into_tokens();
let abs: Vec<_> = t.many_err(|t| parse_ab_err(t)).collect();
let rest: Vec<char> = t.collect();
assert_eq!(abs, vec![Ok(AB), Ok(AB), Ok(AB), Err(ABErr::NotEnoughTokens)]);
assert_eq!(rest, vec!['a']);
}
#[test]
fn test_skip_many() {
let mut t = "".into_tokens();
let n_skipped = t.skip_many(|t| parse_ab(t).is_some());
let rest: Vec<char> = t.collect();
assert_eq!(n_skipped, 0);
assert_eq!(rest, vec![]);
let mut t = "acabab".into_tokens();
let n_skipped = t.skip_many(|t| parse_ab(t).is_some());
let rest: Vec<char> = t.collect();
assert_eq!(n_skipped, 0);
assert_eq!(rest, vec!['a', 'c', 'a', 'b', 'a', 'b']);
let mut t = "ababaab".into_tokens();
let n_skipped = t.skip_many(|t| parse_ab(t).is_some());
let rest: Vec<char> = t.collect();
assert_eq!(n_skipped, 2);
assert_eq!(rest, vec!['a', 'a', 'b']);
}
#[test]
fn test_skip_many1() {
let mut t = "".into_tokens();
let res = t.skip_many1(|t| parse_ab_err(t));
let rest: String = t.collect();
assert_eq!(res, Err(ABErr::NotEnoughTokens));
assert_eq!(&*rest, "");
let mut t = "acabab".into_tokens();
let res = t.skip_many1(|t| parse_ab_err(t));
let rest: String = t.collect();
assert_eq!(res, Err(ABErr::IsNotB));
assert_eq!(&*rest, "acabab");
let mut t = "abcbab".into_tokens();
let res = t.skip_many1(|t| parse_ab_err(t));
let rest: String = t.collect();
assert_eq!(res, Ok(1));
assert_eq!(&*rest, "cbab");
let mut t = "ababcbab".into_tokens();
let res = t.skip_many1(|t| parse_ab_err(t));
let rest: String = t.collect();
assert_eq!(res, Ok(2));
assert_eq!(&*rest, "cbab");
}
}