Expand description
A scale which supports non-uniform scaling.
Fields§
§vector: SVector<T, D>The scale coordinates, i.e., how much is multiplied to a point’s coordinates when it is scaled.
Implementations§
source§impl<T: Scalar, const D: usize> Scale<T, D>
 
impl<T: Scalar, const D: usize> Scale<T, D>
sourcepub fn try_inverse(&self) -> Option<Scale<T, D>>where
    T: ClosedDiv + One + Zero,
 
pub fn try_inverse(&self) -> Option<Scale<T, D>>where
    T: ClosedDiv + One + Zero,
Inverts self.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.try_inverse().unwrap(), Scale3::identity());
assert_eq!(t.try_inverse().unwrap() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.try_inverse().unwrap(), Scale2::identity());
assert_eq!(t.try_inverse().unwrap() * t, Scale2::identity());
// Returns None if any coordinate is 0.
let t = Scale2::new(0.0, 2.0);
assert_eq!(t.try_inverse(), None);sourcepub unsafe fn inverse_unchecked(&self) -> Scale<T, D>where
    T: ClosedDiv + One,
 
pub unsafe fn inverse_unchecked(&self) -> Scale<T, D>where
    T: ClosedDiv + One,
Inverts self.
Example
unsafe {
    let t = Scale3::new(1.0, 2.0, 3.0);
    assert_eq!(t * t.inverse_unchecked(), Scale3::identity());
    assert_eq!(t.inverse_unchecked() * t, Scale3::identity());
    // Work in all dimensions.
    let t = Scale2::new(1.0, 2.0);
    assert_eq!(t * t.inverse_unchecked(), Scale2::identity());
    assert_eq!(t.inverse_unchecked() * t, Scale2::identity());
}sourcepub fn pseudo_inverse(&self) -> Scale<T, D>where
    T: ClosedDiv + One + Zero,
 
pub fn pseudo_inverse(&self) -> Scale<T, D>where
    T: ClosedDiv + One + Zero,
Inverts self.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.pseudo_inverse(), Scale3::identity());
assert_eq!(t.pseudo_inverse() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.pseudo_inverse(), Scale2::identity());
assert_eq!(t.pseudo_inverse() * t, Scale2::identity());
// Inverts only non-zero coordinates.
let t = Scale2::new(0.0, 2.0);
assert_eq!(t * t.pseudo_inverse(), Scale2::new(0.0, 1.0));
assert_eq!(t.pseudo_inverse() * t, Scale2::new(0.0, 1.0));sourcepub fn to_homogeneous(
    &self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
    T: Zero + One + Clone,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1>,
 
pub fn to_homogeneous(
    &self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
    T: Zero + One + Clone,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1>,
Converts this Scale into its equivalent homogeneous transformation matrix.
Example
let t = Scale3::new(10.0, 20.0, 30.0);
let expected = Matrix4::new(10.0, 0.0, 0.0, 0.0,
                            0.0, 20.0, 0.0, 0.0,
                            0.0, 0.0, 30.0, 0.0,
                            0.0, 0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
let t = Scale2::new(10.0, 20.0);
let expected = Matrix3::new(10.0, 0.0, 0.0,
                            0.0, 20.0, 0.0,
                            0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);sourcepub fn try_inverse_mut(&mut self) -> boolwhere
    T: ClosedDiv + One + Zero,
 
pub fn try_inverse_mut(&mut self) -> boolwhere
    T: ClosedDiv + One + Zero,
Inverts self in-place.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
let mut inv_t = Scale3::new(1.0, 2.0, 3.0);
assert!(inv_t.try_inverse_mut());
assert_eq!(t * inv_t, Scale3::identity());
assert_eq!(inv_t * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
let mut inv_t = Scale2::new(1.0, 2.0);
assert!(inv_t.try_inverse_mut());
assert_eq!(t * inv_t, Scale2::identity());
assert_eq!(inv_t * t, Scale2::identity());
// Does not perform any operation if a coordinate is 0.
let mut t = Scale2::new(0.0, 2.0);
assert!(!t.try_inverse_mut());source§impl<T: Scalar + ClosedMul, const D: usize> Scale<T, D>
 
impl<T: Scalar + ClosedMul, const D: usize> Scale<T, D>
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
 
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Translate the given point.
This is the same as the multiplication self * pt.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(4.0, 10.0, 18.0));source§impl<T: Scalar + ClosedDiv + ClosedMul + One + Zero, const D: usize> Scale<T, D>
 
impl<T: Scalar + ClosedDiv + ClosedMul + One + Zero, const D: usize> Scale<T, D>
sourcepub fn try_inverse_transform_point(
    &self,
    pt: &Point<T, D>
) -> Option<Point<T, D>>
 
pub fn try_inverse_transform_point(
    &self,
    pt: &Point<T, D>
) -> Option<Point<T, D>>
Translate the given point by the inverse of this Scale.
Example
let t = Scale3::new(1.0, 2.0, 3.0);
let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0)).unwrap();
assert_eq!(transformed_point, Point3::new(4.0, 3.0, 2.0));
// Returns None if the inverse doesn't exist.
let t = Scale3::new(1.0, 0.0, 3.0);
let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0));
assert_eq!(transformed_point, None);source§impl<T: Scalar, const D: usize> Scale<T, D>
 
impl<T: Scalar, const D: usize> Scale<T, D>
source§impl<T> Scale<T, 6>
 
impl<T> Scale<T, 6>
sourcepub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self
 
pub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self
Initializes this Scale from its components.
Example
let t = Scale6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0 && t.vector.b == 6.0);Trait Implementations§
source§impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq<Scale<T, D>> for Scale<T, D>where
    T::Epsilon: Clone,
 
impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq<Scale<T, D>> for Scale<T, D>where
    T::Epsilon: Clone,
source§fn default_epsilon() -> Self::Epsilon
 
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
 
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers. Read more
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
 
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of 
AbsDiffEq::abs_diff_eq.source§impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 16]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 16]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
 
impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 16]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 16]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
source§impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 2]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 2]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
 
impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 2]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 2]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
source§impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 4]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 4]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
 
impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 4]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 4]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
source§impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 8]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 8]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
 
impl<T, const D: usize> From<[Scale<<T as SimdValue>::Element, D>; 8]> for Scale<T, D>where
    T: From<[<T as SimdValue>::Element; 8]> + Scalar + PrimitiveSimdValue,
    T::Element: Scalar,
source§impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>, Const<1>>>::Buffer>> for Scale<T, D>
 
impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>, Const<1>>>::Buffer>> for Scale<T, D>
source§impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1> + Allocator<T, Const<D>>,
 
impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>, U1> + Allocator<T, Const<D>>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, 'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b Scale<T, D>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, 'b, T, const D: usize> Mul<&'b Scale<T, D>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'b, T, const D: usize> Mul<&'b Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<Scale<T, D>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, T, const D: usize> Mul<Scale<T, D>> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<T, const D: usize> Mul<Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<T> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<'a, T, const D: usize> Mul<T> for &'a Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<T> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
 
impl<T, const D: usize> Mul<T> for Scale<T, D>where
    T: Scalar + ClosedMul,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> MulAssign<&'b Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
 
impl<'b, T, const D: usize> MulAssign<&'b Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
source§fn mul_assign(&mut self, right: &'b Scale<T, D>)
 
fn mul_assign(&mut self, right: &'b Scale<T, D>)
Performs the 
*= operation. Read moresource§impl<T, const D: usize> MulAssign<Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
 
impl<T, const D: usize> MulAssign<Scale<T, D>> for Scale<T, D>where
    T: Scalar + ClosedMul,
source§fn mul_assign(&mut self, right: Scale<T, D>)
 
fn mul_assign(&mut self, right: Scale<T, D>)
Performs the 
*= operation. Read moresource§impl<T, const D: usize> MulAssign<T> for Scale<T, D>where
    T: Scalar + ClosedMul,
 
impl<T, const D: usize> MulAssign<T> for Scale<T, D>where
    T: Scalar + ClosedMul,
source§fn mul_assign(&mut self, right: T)
 
fn mul_assign(&mut self, right: T)
Performs the 
*= operation. Read moresource§impl<T: Scalar + PartialEq, const D: usize> PartialEq<Scale<T, D>> for Scale<T, D>
 
impl<T: Scalar + PartialEq, const D: usize> PartialEq<Scale<T, D>> for Scale<T, D>
source§impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Scale<T, D>> for Scale<T, D>where
    T::Epsilon: Clone,
 
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Scale<T, D>> for Scale<T, D>where
    T::Epsilon: Clone,
source§fn default_max_relative() -> Self::Epsilon
 
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
source§fn relative_eq(
    &self,
    other: &Self,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool
 
fn relative_eq(
    &self,
    other: &Self,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool
A test for equality that uses a relative comparison if the values are far apart.
source§fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool
 
fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool
The inverse of 
RelativeEq::relative_eq.source§impl<T: Scalar + SimdValue, const D: usize> SimdValue for Scale<T, D>where
    T::Element: Scalar,
 
impl<T: Scalar + SimdValue, const D: usize> SimdValue for Scale<T, D>where
    T::Element: Scalar,
§type Element = Scale<<T as SimdValue>::Element, D>
 
type Element = Scale<<T as SimdValue>::Element, D>
The type of the elements of each lane of this SIMD value.
§type SimdBool = <T as SimdValue>::SimdBool
 
type SimdBool = <T as SimdValue>::SimdBool
Type of the result of comparing two SIMD values like 
self.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
 
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
Extracts the i-th lane of 
self without bound-checking.source§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
 
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of 
self by val without bound-checking.source§impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Scale<T1, D>where
    T1: RealField,
    T2: RealField + SupersetOf<T1>,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
 
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Scale<T1, D>where
    T1: RealField,
    T2: RealField + SupersetOf<T1>,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(
    &self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
 
fn to_superset(
    &self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
The inclusion map: converts 
self to the equivalent element of its superset.source§fn is_in_subset(
    m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
 
fn is_in_subset(
    m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
Checks if 
element is actually part of the subset Self (and can be converted to it).source§fn from_superset_unchecked(
    m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
 
fn from_superset_unchecked(
    m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Use with care! Same as 
self.to_superset but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Scale<T2, D>> for Scale<T1, D>where
    T1: Scalar,
    T2: Scalar + SupersetOf<T1>,
 
impl<T1, T2, const D: usize> SubsetOf<Scale<T2, D>> for Scale<T1, D>where
    T1: Scalar,
    T2: Scalar + SupersetOf<T1>,
source§fn to_superset(&self) -> Scale<T2, D>
 
fn to_superset(&self) -> Scale<T2, D>
The inclusion map: converts 
self to the equivalent element of its superset.source§fn is_in_subset(rot: &Scale<T2, D>) -> bool
 
fn is_in_subset(rot: &Scale<T2, D>) -> bool
Checks if 
element is actually part of the subset Self (and can be converted to it).source§fn from_superset_unchecked(rot: &Scale<T2, D>) -> Self
 
fn from_superset_unchecked(rot: &Scale<T2, D>) -> Self
Use with care! Same as 
self.to_superset but without any property checks. Always succeeds.source§impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D>where
    T1: RealField,
    T2: RealField + SupersetOf<T1>,
    C: SuperTCategoryOf<TAffine>,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
 
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D>where
    T1: RealField,
    T2: RealField + SupersetOf<T1>,
    C: SuperTCategoryOf<TAffine>,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T1, DimNameSum<Const<D>, U1>, U1> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(&self) -> Transform<T2, C, D>
 
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts 
self to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, D>) -> bool
 
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if 
element is actually part of the subset Self (and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
 
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as 
self.to_superset but without any property checks. Always succeeds.source§impl<T: Scalar + UlpsEq, const D: usize> UlpsEq<Scale<T, D>> for Scale<T, D>where
    T::Epsilon: Clone,
 
impl<T: Scalar + UlpsEq, const D: usize> UlpsEq<Scale<T, D>> for Scale<T, D>where
    T::Epsilon: Clone,
impl<T: Copy, const D: usize> Copy for Scale<T, D>
impl<T: Scalar + Eq, const D: usize> Eq for Scale<T, D>
Auto Trait Implementations§
impl<T, const D: usize> RefUnwindSafe for Scale<T, D>where
    T: RefUnwindSafe,
impl<T, const D: usize> Send for Scale<T, D>where
    T: Send,
impl<T, const D: usize> Sync for Scale<T, D>where
    T: Sync,
impl<T, const D: usize> Unpin for Scale<T, D>where
    T: Unpin,
impl<T, const D: usize> UnwindSafe for Scale<T, D>where
    T: UnwindSafe,
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
    SS: SubsetOf<SP>,
 
impl<SS, SP> SupersetOf<SS> for SPwhere
    SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
 
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct 
self from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
 
fn is_in_subset(&self) -> bool
Checks if 
self is actually part of its subset T (and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
 
fn to_subset_unchecked(&self) -> SS
Use with care! Same as 
self.to_subset but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
 
fn from_subset(element: &SS) -> SP
The inclusion map: converts 
self to the equivalent element of its superset.